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COMPARISON OF THE COMPOUND MATRIX AND ORTHONORMALISATION
METHODS FOR CALCULATING THE STABILITY

OF HEATED WATER BOUNDARY LAYERS
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Summa rv

A fourth-order eiaenvalue finder for calculatinq the
stability of heated water boundary layers has been developed from
a sixth-order orthonormalisation method supplied by British
Maritime Technology (BMT) Ltd. Comparisons have been made with a
fourth-order eiaenvalue finder based on the compound matrix
method, also supplied by BMT, and the original sixth-order
method. All the methods aive similar results but there appear to
be some numerical problems at high values of surface overheat.
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LIST OF SYMBOLS

Dimensionless complex wavespeed (= w/ou e)

ImE] Imaginary part of complex quantity

R Displacement thickness Reynolds number (= UeS /v.)

Re[] Real part of complex quantity

t Time (s)
-I

u Velocity component in x-direction (m s)
u Dimensionless velocity (= u/ue

x Streamwise co-ordinate (m)

y Normal co-ordinate (m)

(Complex wavenumber

(Dimensionless complex wavenumber (= m8

8Boundary-layer displacement thickness

TTransformed normal co-ordinate, defined by equation (3)

P Dynamic viscosity (N s m -2)

Dimensionless viscosity (= p/p.)

Kinematic viscosity (m2s-I )

p Density (kg m -3)

0 Amplitude of disturbance stream function

wAngular frequency

w Dimensionless angular frequency (= w& /ue)

Subscripts

e Value at outer edge of boundary layer

w Surface value

Freestream value
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INTRODUCTION

The calculation of the linear stability of heated water
boundary layers has been tackled by previous workers using two
different mathematical models. The majority of workers have
assumed that the effects of heating can be modelled simply by
allowing the viscosity to vary across the boundary layer, which
results in a modified version of the well-known fourth-order
Orr-Sommerfeld equation. Lowell & Reshotko [1] have also
considered a more sophisticated model where fluctuations in all
the fluid properties are included and this results in a sixth-
order stability equation. BMT Ltd have developed eigenvalue
solvers for both fourth- and sixth-order formulations, which have
been implemented and tested at ARE by Atkins (2). The fourth-
order eigenvalue solver uses the compound matrix method and the
sixth-order solver the orthonormalisation method. Some numerical
experiments on flat plates with constant overheat for the
temporal stability case show small differences in the resulting
eigenvalues. These differences may arise solely from the
different mathematical models or there may be additional effects
due to the different numerical methods.

The present investigation aims to compare the compound
matrix and orthonormalisation methods in solving the same
stability problem and to compare eicgenvalues of the fourth-order
and sixth-order models using the same numerical method. To
achieve this, the sixth-order stability code (using orthonormal-
isation) was reduced to fourth-order and compared with the
existina compound matrix method. A comparison was also made
between fourth-order and sixth-order eiaenvalues, both obtained
usina the orthonormalisation method.

2. THEORY

The fourth-order linear stability equation for laminar flow
over a heated body is the modified Orr-Sommerfeld equation

C - ' - K2 ) - u + i {.. - 2 - 0 , + -4

(xR

+' -2 + 0I ( +2 )} = 0 (1)

where primes represent differentiation with respect to the normal
-A

co-ordinate y!. The mean flow u is assumed to be parallel to
the body surface, and small two-dimensional velocity disturbances
are represented by the stream function

If y, t) 'e[r'7' Txtr [i (x-ct)lJ (2)

Surface overheat produces variation in the dynamic viscosity p
of the fluid, in the normal direction. which gives rise to the
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extra terms involving viscosity and its derivatives in equation
(1). The fourth-order stability calculation finds either spatial
or temporal eigenvalues of (1), the present study being limited

to temporal eigenvalues w, given the Reynolds number R (based

on displacement thickness) and wavenumber M.

The mean flow data used in this study were calculated at 101
points on a uniform grid defined by the Howarth-Dorotnitsyn
similarity variable TI, viz.

1/2

{PooUe} -Y P dy (3)

Accurate velocity and temperature profiles with derivatives are
available [2) for surface temperatures of 15.60C (600F), 32.2 0C
(900F). 65.60C (150 0F) and 93.30C (200 0F), and an ambient fluid
temperature of 15.61C (601F). Before this data could be input to
a stability calculation, it was necessary to interpolate the data
to more points and express it as a function of the physical co-

ordinate y/S . The fourth-order stability calculation requires
profiles of velocity with its second derivative and viscosity
with its first and second derivative, and a BMT routine known as
NMIAT514 was used to calculate them. The sixth-order calculation
requires profiles of velocity, temperature, viscosity, density
and thermal diffusivity, with first and second derivatives, plus
volumetric expansivity with first derivative and specific heat.
These profiles were calculated using a modified version of a BMT
routine known as BMTMF2. These routines used expressions for the
fluid properties expressed as functions of temperature proposed
by Lowell & Reshotko [l]. including the effect of variable
density, and were modified to give output at between 101 and 320)
data points.

3. NUMERICAL RESULTS

Many of the results given in the literature, e.g. those of
Lowell & Reshotko [l), are for spatial eiqenvalues, but the
orthonormalisation methods as implemented find only temporal
eigenvalues. However, Gaster [31 quotes a few very accurate
temporal eigenvalues given previously by Davey for the Blasius
boundary layer, i.e. the flow over an unheated flat plate. These
values were used as a test example for comparison with the
compound matrix method (hereafter referred to as CM4) and the
fourth-order orthonormalisation method (04). The results,
presented in Table I, show that 04 gives very accurate eigen-
values using input profiles specified at 801 points across the
boundary laycr, whereas CM4 requires 3201 points for similar
accuracy. These calculations, along with most of the others
presented in this Section, were carried out using double pre-
cision (64 bit) arithmetic. Numerical comparisons of CM4 and 04
for a heated plate with a surface overheat of 16.6 0 C (300F) are
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presented in Table II. Corresponding eigenvaiues differ in the
fifth place of decimals, and in general CM4 requires about four
times as many data points as 04 to achieve the same accuracy.

In order to achieve a reliable comparison between 04 and the
original sixth-order orthonormalisation method (06), the sixth-
order interpolation code BMTMF2 was modified to produce profiles
which could be read in directly by 04. Table II shows compari-
sons between 04 and 06 for a plate with overheat of 16.60C
(300F), using 801 mean flow data points. Corresponding eigen-
values differ in the fourth decimal place. Tables IV and V show
results similar to those in Tables II and III respectively for an
overheat of 77.7 0C (140 0 F). 04 and CM4 eigenvalues differ in the
third or fourth decimal place and 04 and 06 eigenvalues in the
third decimal place. At this high value of surface overheat,
CM4 eigenvalues computed using 400 data points are significantly
in error, and 06 fails to converge at Reynolds numbers at or
above 10.000. It should be noted, by comparison of Tables II and
TI1 or Tables TV and V, that corresponding 04 eigenvalues differ
in the fifth place of decimals. These differences arise from the
use of different interpolation codes (NMIAL514 and BMTMF2) to
calculate the input profiles.

The domains of convergence for 04 and CM4 were found for two
different eigenvalues at a surface overheat of 16.60C (300F),
using 801 data points. The results are presented in Figure 1.

At R=400 and cL=0.05, the domain of convergence for 04 is
slightly larger than that for CM4, whereas at R=20,000 and

ox=0.15. 04 has a much larger domain of convergence than CM4. It
should be noted that 04 requires two initial guesses whereas CM4
requires only one. For these tests, two values relatively close
toqether were chosen.

4. CONCLUSIONS

Eigenvalues of temporal stability have been calculated for
unheated and heated flat plate boundary layers using numerical
methods based on compound matrices and orthonormalisation. and
fourth- and sixth-order mathematical models. The compound matrix
method requires about four times as many grid points across the
boundary layer cs the orthonormalisation method to achieve the
same accuracy. Nontrivial but small differences in eigenvalues
arise from using different numerical methods, different interp-
olation codes and a sixth-order rather than a fourth-order
mathematical model. However these differences are of no practi-
cal significance in engineering calculations of flow transition
based on the calculation of amplification factors. The fourth-
order orthonormalisation method is often much less sensitive to
the initial guess than the compound matrix method. At Reynolds
numbers above 10,000 with large surface overheat, the sixth-order
orthonormalisation method fails to converge.
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Compound Matrices Orthonormalisation

No. of Data Frequency, w Frequency, w

Points Real Imac Real Imaq

101 0.11837108 0.00043163 0.11927733 -0.00026881
R=500 201 0.11920156 -0.00024126 0.11930217 -0.00027839401 0.11929573 -0.00027810 0.11930368 -0.00027985

801 0.11930321 -0.00027989 0.11930376 -0.000279980.3 1601 0.11930372 -0.00027997 0.11930377 -0.00027998

3201 0.11930376 -0.00027998 0.11930377 -0.00027998

Davey result ................. 0.11930376 -0.00027998

101 A.06094088 0.00681870 0.06308966 0.00315653
201 0.06272070 0.00335158 0.06312052 0.00315793401 0.06308739 0.00316429 0.06312277 0.00315676

801 0.06312033 0.00315687 0.06312291 0.00315663
=0.2 1601 0.06312274 0.00315664 0.06312291 0.00315663

3201 0.06312290 0.00315663 0.06312291 0.00315663

Davey result ................. 0.06312291 0.00315663

101 0.03876340 0.01055162 0.04018800 0.00277420
201 0.03935751 0.00325268 0.04021674 0.00278175401 0.04013689 0.00279521 0.04021904 0.00278080

801 0.04021302 0.00278075 0.04021918 0.00278068
S:0.15 1601 0.04021876 0.00278069 0.04021919 0.00278068

3201 0.04021916 0.00278071 0.04021919 0.00278067

Davey result ................. 0.04021919 0.00278068

Table I Effect of number of data points on eiqenvalues
for Blasius flaw
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Compound Matrices Orthonormalisation

No. of Data Frequency, w Frequency, t-

Points Real Imag Real Imag

401 0.02672564 -0.00053033 0.02687768 -0.00056928
801 0.02688539 -0.00057322 0.02687812 -0.00056975
1601 0.02689827 -0.00057377 0.02687815 -0.000569793201 0.02689917 -0.00057371 0.02687815 -0.00056979

401 0.03583790 0.00038594 0.03605866 0.00019017
801 0.03607127 0.00019029 0.03606103 0.00018960

&=0.16 1601 0.03609431 0.00017986 0.03606118 0.00018952
3201 0.03609607 0.00017933 0.03606119 0.00018952

R=7000 401 0.02553635 0.00020172 0.02579902 0.00007982
801 0.02579891 0.00007993 0.02579999 0.00007926

=0.12233 1601 0.02582203 0.00007605 0.02580005 0.000079213201 0.02582371 0.00007599 0.02580005 0.00007920

R=8950 401 0.02068249 0.00021632 0.02102659 0.00007213801 0.02101595 0.00007424 0.02102736 0.00007161

x=0.10668 1601 0.02104530 0.00007098 0.02102742 0.000071563201 0.02104744 0.00007105 0.02102742 0.00007156

401 0.03317202 0.00136906 0.03324520 0.00001425
801 0.03322688 0.00010979 0.03325574 0.00001756

=0.17315 1601 0.03328664 0.00000889 0.03325657 0.000017583201 0.03329300 0.00000215 0.03325662 0.00001757

R=400 401 0.01554260 -0.00736119 0.01559615 -0.00747471
801 0.01554284 -0.00736108 0.01559615 -0.00747471
1601 0.01554285 -0.00736108 0.01559615 -0.007474713201 0.01554285 -0.00736108 0.01559615 -0.00747471

R=2000 401 0.02555008 -0.00371474 0.02558157 -0.00372007801 0.02557896 -0.00371171 0.02558150 -0.00372014

1601 0.02558096 -0.00371123 0.02558149 -0.003720143201 0.02558109 -0.00371119 0.02558149 -0.00372014

R=10000 401 0.03003820 0.00115138 0.03043131 0.00061624801 0.03041710 0.00064024 0.03043521 0.00061618

1601 0.03046383 0.00061023 0.03043549 0.000616103201 0.03046768 0.00060861 0.03043550 0.00061609

R=20000 401 0.02657391 0.00258528 0.02666037 0.00053342801 0.02659262 0.00068348 0.02667001 0.00053709

1601 0.02669105 0.00053670 0.02667079 0.000537143201 0.02670150 0.00052711 0.02667085 0.00053713

Table II Effect of number of data points on
heated flat-plate eiqenvalues

(T.= 15.60C (600F), Tw =32.2-C (90-F))
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Fourth-order Sixth-order

Reynolds Wave- Frequency, w Frequency, w
Number, number

R O Real Imaq Real Imaq

5000 0.12 0.0268800i -0.00057423 0.02681933 -0.00070606

6000 0.16 0.03606273 0.00018400 0.03607933 0.00013684

7000 0.12233 0.02580160 0.00007486 0.02578732 0.00000232

8950 0.10668 0.02102873 0.00006782 0.02101412 0.00000140

14250 0.17315 0.03325552 0.00001264 0.03333099 -0.00000042

400 0.05 0.01559874 -0.00747565 0.01529915 -0.00630088

2000 0.10 0.02558384 -0.00372396 0.02476187 -0.00431349

10000 0.15 0.03043617 0.00061122 0.03047583 0.00058985

20000 0.15 0.02666979 0.00053281 0.02673102 0.00052394

Table III Comparison of eigenvalues using fourth-order

and sixth-order approaches

(Orthonormalisation method, T,= 15.6 0C (600F), Tw= 32.2 0C (900F),

801 mean flow data points)
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Compound Matrices Orthonormalisation

No. of Data Frequency, w Frequency, w

Points Real Ima Real Imag

401 0.01536584 -0.00996988 0.01433481 -0.00866549

R=400 801 0.01536766 -0.00996953 0.01433474 -0.00866549

(=0.05 1601 0.01536779 -0.00996950 0.01433474 -0.00866549

3201 0.01536779 -0.00996950 0.01433474 -0.00866549

401 0.02048911 -0.00514367 0.02076047 -0.00477339

R=2000 801 0.02065693 -0.00516084 0.02075991 -0.00477347

Oc=O.l 1601 0.02066983 -0.00515970 0.02075979 -0.00477349

3201 0.02067071 -0.00515940 0.02075978 -0.00477349

401 0.03808305 -0.01629625 0.02424646 0.00009607

R=10000 801 0.02386329 0.00015183 0.02428397 0.00011381

a=0.15 1601 0.02414258 0.00000271 0.02428719 0.00011292

320] 0.02416821 -0.00000321 0.02428739 0.00011277

401 0.04828146 -0.02063293 0.02114929 0.00062425

R=20000 801 0.02046138 0.00144013 0.02121030 0.00069691

(X=0.15 1601 0.02102590 0.00067174 0.02121867 0.00069828

3201 0.02110003 0.00063098 0.02121930 0.00069814

Table IV Effect of number of data points on heated
flat plate eicrenvalues

(T.= 15.6°C (60-F), T = 93.3°C (200°F))
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Fourth-order Sixth-order

Reynolds Wave- Frequency, w Frequency, w
Number, number

R O Real Imaq Real

5000 0.12 0.02175446 -0.00178270 0.02190792 -0.00181386

6000 0.16 0.02879021 -0.00066548 0.02924572 -0.00068008

7000 0.12233 0.02083715 -0.00098930 0.02108551 -0.00100218

8950 0.10668 0.01706483 -0.00088341 0.01725744 -0.00088598

14250 0.17315 0.02643489 0.00049906 failed to converge

400 0.05 0.01458126 -0.00872240 0.01314170 -0.00646626

2000 0.10 0.02117409 -0.00474457 0.02034761 -0.00457443

10000 0.15 0.02479067 -0.00017715 0.02473125 0.00007119

20000 0.15 0.02167021 0.00072690 failed to converge

Table V Comparison of eiqenvalues using fourth-order
and sixth-order approaches

(Orthonormalisation method, T.= 15.6 0 C (600F), Tw= 93.3 0 C (200 0F),
801 mean-flow data points)
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